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Nonperturbative renormalization group approach to turbulence
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Abstract. We suggest a new, renormalization group (RG) based, nonperturbative method for treating the
intermittency problem of fully developed turbulence which also includes the effects of a finite boundary of
the turbulent flow. The key idea is not to try to construct an elimination procedure based on some assumed
statistical distribution, but to make an ansatz for possible RG transformations and to pose constraints upon
those, which guarantee the invariance of the nonlinear term in the Navier-Stokes equation, the invariance
of the energy dissipation, and other basic properties of the velocity field. The role of length scales is
taken to be inverse to that in the theory of critical phenomena; thus possible intermittency corrections
are connected with the outer length scale. Depending on the specific type of flow, we find different sets
of admissible transformations with distinct scaling behaviour: for the often considered infinite, isotropic,
and homogeneous system K41 scaling is enforced, but for the more realistic plane Couette geometry no
restrictions on intermittency exponents were obtained so far.

PACS. 47.27.Gs Isotropic turbulence; homogeneous turbulence – 47.27.Jv High-Reynolds-number
turbulence

1 Introduction

A fundamental, yet unsolved problem of fully developed
turbulence is the scaling behaviour of the structure func-
tions in the inertial range for Reynolds numbers approach-
ing infinity.

Although many if not most experiments seem to favour
the existence of intermittency corrections [1–5], some
other experiments seem to confirm the classical “K41”
exponents [6,7]. Thus, the possibility remains that mea-
sured intermittency corrections are due to still-to-small
Reynolds numbers, invalidity of Taylor’s hypothesis, lack
of statistics or other experimental deficiencies.

On the theoretical side, there hasn’t been much
progress in this regard either since K41 theory [8–12] and
mean-field theories such as reference [13] and Kraichnan’s
LHDIA [14]. Numerical simulations [15–17] still do not
achieve high enough Reynolds numbers, and approxima-
tions allowing higher Reynolds numbers such as REWA
[18–20] reduce the degrees of freedom without control
of the consequences. Phenomenological models [21–33]
are not only limited to physically “explaining” intermit-
tency corrections without being able to connect intermit-
tency with the Navier-Stokes dynamics, but cannot even
demonstrate its existence for Navier-Stokes turbulence
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since statistical models generically show intermittency
anyhow [34].

The basic motivation to analyze turbulence with RG
methods comes from a couple of similarities with critical
phenomena: the importance of extremely many spatial de-
grees of freedom, strong fluctuations, and nonlinear inter-
action, to name a few. These ingredients are essential for
spatially extended self-similar structures and scaling laws
with nontrivial exponents. We now briefly discuss some of
the many efforts to derive inertial range scaling exponents
with the aid of RG and/or field theory; current overviews
can be found in references [35–38].

The first, by now “classical” approach of references
[39–41] formally adopted the formalism of Wilson style
respectively field-theoretic RG theory for critical phenom-
ena to hydrodynamics. Microscopic degrees of freedom
are eliminated by averaging over an artificial, stochas-
tic, and microscopic volume forcing. The intermittency
exponents depend on the forcing’s spectral strength, and
these authors explicitly state that such a theory is not ad-
equate for fully developed turbulence. Nevertheless there
are several extensions of these theories such as references
[42,43] where the incorporation of traditional closure
methods enables the calculation of dimensionless numbers
like Kolmogorov’s constant. Other work employs a driv-
ing force restricted to small wave numbers without being
able to calculate an effective, RG invariant forcing [44].
Yet another idea is to examine freely decaying turbulence
with random initial conditions [45]. Last but not least,
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formal analogies to other RG theories such as renormal-
ized quantum field theory are possible [37].

Quite early in the game, another mapping to critical
phenomena was suggested which seems to match the com-
mon phenomenological point of view of turbulence much
better [46–50]. It is “inverse” in the sense that macroscopic
degrees of freedom should be eliminated, and that, conse-
quently, intermittency corrections are related to the outer
length scale. Another, within this picture obvious, but ac-
tually rarely suggested idea is to take the energy dissipa-
tion rate to be the RG invariant quantity instead of the
free energy which does not seem to have any special role in
turbulence [48,51]. We are aware of two actual attempts
for an inverse RG theory, one with Wilson-style elimina-
tion of degrees of freedom [48] and one field-theoretic one
[52]. Although being inverse, both adopt major basic prop-
erties of thermodynamic systems which do not seem to be
adequate for turbulence.

All methods mentioned so far use perturbation theory
with the strength of the nonlinear interaction term of the
Navier-Stokes equation being treated as a formal expan-
sion parameter which is problematic without a suitable re-
summation procedure. Furthermore there are unphysical
infrared divergencies; a problem which can be solved by
using a formal perturbation approach with velocity differ-
ences instead of Eulerian velocities [53]. This perturbation
theory is still being worked on [54–56], but so far not with
RG methods.

Without judging all these efforts, it is fair to say that
the calculation of inertial range scaling exponents from
the Navier-Stokes equation has not been achieved yet.

There is a very important aspect of turbulence which
is mostly neglected in turbulence theories: the boundaries
of the system. Numerical simulations usually employ pe-
riodic boundary conditions and analytical theories try to
take care of the finite system size with a formal “outer
length” parameter. Energy input, which is required to bal-
ance energy dissipation, is realized with a volume forcing
which might be unphysical.

In this work now, we introduce a new, analytical and
inverse RG method which is based on the Navier-Stokes
equation and tries to take into account the boundaries.
The paper is organized as follows: in Section 2 we de-
rive the equation of motion for certain velocity differences,
which will be our order parameter. In Section 3 we explain
the physical ideas of the new RG approach before actually
calculating RG transformations in Sections 5–7. We end
with a summary and discussion in Section 8.

2 Equations of motion

Our starting point is the Navier-Stokes equation

∂tu + u·∇xu +∇x p = ν ∆xu (1)

for the Eulerian velocities u(x, t) and the kinematic pres-
sure p(x, t) of incompressible motion of a fluid with kine-
matic viscosity ν in a three-dimensional flow volume Ω.

Fig. 1. Plane shear flow between two plates at distance L
moving with relative velocity UL.

Fig. 2. Illustration of definition (3) of the velocity increment
w(r, t|x0, t0).

To be more definite, we consider plane shear flow be-
tween two infinite plates (Fig. 1). We define the plates to
be located at x2 = 0 moving with velocity UL in posi-
tive x3-direction respectively resting at x2 = L. Reynolds’
number is defined as Re = ULL/ν.

2.1 Velocity increments

The choice of the order parameter is crucial for any RG
theory. It is therefore desirable to find a closed equation of
motion for velocity increments instead of considering the
Navier-Stokes equation for the Eulerian velocities, since
such variables are commonly believed to be capable of
exhibiting universal behavior. This can be achieved by
means of a transformation introduced by Monin [57,58].
Since it does not seem to be widely-known in spite of its
reintroduction in [53], we present it here relatively de-
tailed. The idea is to measure the Eulerian velocity field
u in a frame of reference defined by an arbitrary but fixed
marker particle passively advected with the flow (Fig. 2).
The Lagrangian trajectory s(t|x0, t0) for such a marker
which is at position x = x0 for t = t0 is given by

s(t|x0, t0) = x0 +

∫ t

t0

dτ u(s(τ |x0, t0), τ). (2)

Next, we define a “velocity increment”

w(r, t|x0, t0) = u(s(t|x0, t0) + r, t)− u(s(t|x0, t0), t).
(3)

The field w(r, t) describes a velocity difference between
two space points separated by the increment r, for all
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times t, but has Eulerian as well as Lagrangian charac-
teristics. Monin’s transformation from u to w thus takes
care of the very special property of flow fields being cou-
pled to the actual movement of fluid elements.

Plugging (3) into (1) gives a closed equation for w,

∂tw + w·∇rw +∇xp = ν ∆rw − s̈. (4)

There is no explicitly u dependent term due to Galilean
invariance. The term −s̈ describes a fictitious force (per
mass) because the frame of reference, i.e., the marker,
moves nonuniformly. Since it is independent of r, it may
be eliminated by taking the difference of (4) for arbi-
trary r as well as for r = 0. Formally, we introduce an
operator S,

S[q](r, t) = q(r, t)− q(0, t), (5)

and apply it to (4):

∂tw + w·∇rw + S[∇xp] = ν S[∆rw]. (6)

The boundary conditions cannot be expressed in terms
of w and r alone since the boundaries break Galilean in-
variance. The velocity increments w are defined on a flow
volume moving relative to the marker,

Ω(s(t|x0, t0)) = {r = x− s(t|x0, t0)
∣∣x ∈ Ω}

with the corresponding surface ∂Ω(s(t|x0, t0)). So far our
introduction of Monin’s transformation.

We now specify how statistical averages are defined.
First, a local x-centered space average over an a-cube is
taken for every space point x. Second, an infinite time
average is performed. Finally, the limit of the averaging
volume approaching zero is taken. We assume that the
properties of the nonlinear fluid dynamics guarantee that
all mean quantities considered in this work exist and are
independent of x1, x3 and t0. More formally, we define:

〈f〉 (x2) = lim
a→0

lim
t→∞

∫ t

t0

dτ

t− t0

∫
2|ξi−xi|≤a

d3ξ

a3
f(ξ, τ)

= lim
a→0

lim
t→∞

∫ t

t0

dτ

t− t0

∫
2|si(τ |x0,t0)−xi|≤a

d3x0

a3
f(r, τ |x0, t0).

(7)

The second equality follows from det∇x0s = 1 which holds
because ∇s·u = 0 and Lagrangian trajectories are unique.

From now on we will often use the shorthand notation
s(t) and w(r, t) for s(t|x0, t0) and w(r, t|x0, t0), respec-
tively.

2.2 r-velocity fluctuations

The statistics of the velocity increment field w are nonuni-
versal in general. Not even the mean value 〈w〉 = U(x2 +
r2)−U(x2) will vanish because of the anisotropy inherent
to the turbulent profile Ui(x2) = 〈ui〉 (x2) = U(x2) δi,3
which reflects the boundary anisotropy. It seems therefore

reasonable to subtract the turbulent profile from both Eu-
lerian velocities appearing in the definition of w. We call
the resulting quantity

v(r, t) = w(r, t)− [U(s(t) + r)−U(s(t))]

= [u(s(t) + r, t)−U(s(t) + r)]

− [u(s(t), t) −U(s(t))] (8)

the “r-velocity fluctuation”. By definition we have 〈v〉 = 0
and, of course, v is divergence free. The boundary condi-
tion for v(r, t) is given by the marker’s negative r-velocity
fluctuations,

v(r, t)
∣∣
r∈∂Ω(s(t))

= − [u(s(t), t) −U(s(t))] , (9)

which, remarkably, is independent of r. The quantity v is
expected to have universal properties and seems to be the
most natural choice for the “order parameter” of turbu-
lence. It vanishes for laminar flows.

The pressure p is eliminated as usual by formally solv-
ing a Poisson equation (we employ standard summation
conventions):

p(x, t) = pf(x, t)

−

∫
Ω

d3ξ GΩ(x, ξ) ∂ξi∂ξj
(
ui(ξ, t)uj(ξ, t)

)
,

where the Green function GΩ is determined by the geom-
etry, i.e., ∂xi∂xiGΩ(x, ξ) = δ(x− ξ), GΩ(x, ξ)

∣∣
x∈∂Ω

≡ 0.
Here, the pressure is assumed to be constant at the closed
parts of the boundary, otherwise there would be an extra
surface contribution to p. While this is physically reason-
able, it should be remarked that the admissibility of such
boundary conditions is mathematically nontrivial, since
the compatibility condition ν ∆xu = ∇xp has to be ful-
filled also at the boundary. For the geometry of plane shear
flow one can easily verify the integral representation

GΩ(x, ξ) = −
1

4π

∫ ∞
0

dk J0(k
√

(x1 − ξ1)2 + (x3 − ξ3)2)

×
cosh(k(|x2 − ξ2| − L))− cosh(k(x2 + ξ2 − L))

sinh(kL)
(10)

for the Green function. The expression for the pressure
may be combined with the nonlinear term of the Navier-
Stokes equation,

u·∇xu +∇xp = D̃[u·∇xu] +∇xpf ,

where the operator D̃ projects to divergence free functions:

D̃i[q](x, t) = qi(x, t) −

∫
Ω

d3ξ ∂xiGΩ(x, ξ) ∂ξj qj(ξ, t).

Finally, we obtain an equation of motion for v by insert-
ing (8) into (6) and employing ∇rw =∇rv +∇rU(s + r):

∂tv + SD[v·∇rv] = ν S[∆rv] + F [v]. (11)
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The projector D is defined analogously to D̃:

Di[q](r, t) = qi(r, t)

−

∫
Ω(s(t))

d3ρ ∂riGΩ(r + s(t),ρ+ s(t)) ∂ρj qj(ρ, t). (12)

The terms containing the turbulent profile U can be in-
terpreted as driving force (per mass) for the r-velocity
fluctuation:

F [v] = −SD[(U(s + r)−U(s))·∇rv(r, t)

+ v(r, t)·∇rU(s + r)] + ν S[∆rU(s + r)]

− S∇rpf − u(s, t)·S[∇r(U(s + r)−U(s))]. (13)

The forcing term depending explicitly on u is equal to
∂t[U(s(t) + r) − U(s(t))]. Such explicit u dependence is
no surprise since the Galilean invariance, which Monin’s
transformation relies on, is destroyed by the boundary.
Thus, (11) alone is not equivalent to (1) because the tra-
jectory s(t) is needed which itself is determined by (1).

We consider (11) as an equation of motion for the
order parameter v with given profile U and marker tra-
jectories s(t). In this sense it is analogous to the various
time-dependent Ginzburg-Landau equations used for RG
treatment of dynamical critical phenomena, but as op-
posed to the latter the forcing here is deterministic. No
statistical distribution has to be introduced as it is usu-
ally done for RG theories of turbulence.

3 A new RG method

In this section we outline our physical understanding how
a RG theory could be applied to fully developed turbu-
lence. The point of view presented in Section 3.1 will guide
us in Section 3.2 where the ideas for a new RG method
are developed.

3.1 Inverse RG

After choosing the r-velocity fluctuation v as the order
parameter in the previous section, a mapping of quantities
of turbulence to those of critical phenomena is given. It is
based on the idea of an inverse RG transformation pursued
in earlier work [46–50].

The large spatial scales, which are governed by a forc-
ing depending on the flow geometry, are considered as
nonuniversal in the RG sense, and thus correspond to the
microscopic interaction scales (or lattice constant) in crit-
ical phenomena. The small spatial scales where viscosity
dominates are seen as universal in the RG sense and anal-
ogous to the scales in critical phenomena set by the macro-
scopic system size. In this picture one expects anomalous
scaling for r above ` in analogy to r below the correlation
length in the critical case and regular behaviour for r→ 0
as for the wavenumber approaching zero in the critical
case. Thus, the (longitudinal) structure functions

D(m)(r) =
〈(

v(r, t)·
r

r

)m〉
(14)

should scale with non-K41 intermittency exponents in the
inertial range, and be analytic in the viscous range. We do
not study correlations in time and implicitly allege that
turbulence has a “static limit”, i.e., a description of equal-
time correlations independent of correlations in time.

At this point one might ask which turbulent quantity
corresponds to the correlation length. If we take the ex-
change of the role of large and small scales seriously, this
ought to be a viscous length which we will call ` in the
following. Since there is strong indication that the energy
spectrum decays in the viscous range according to the uni-
versal law

E(k) ∝
〈
|v(k, t)|2

〉
∝ exp(−` k/(2π)) kβ for 2π/k� `

with some exponent β [32], we may define a dissipation
length `(ν) through ` = − limk→∞(lnE(k))/(k/2π). This
is completely analogous to the definition of the correlation
length through the decay of the order parameter correla-
tion function for spatial distances far beyond the correla-
tion length.

Because there is no evidence that ` vanishes for a finite
value of ν, ν → 0 is the “turbulent limit” corresponding to
the critical limit of the temperature approaching the crit-
ical temperature. Using the language of phase transitions,
a turbulent system is always in the “disordered phase” be-
cause of 〈v〉 = 0. Since an ordered phase would appear for
negative, but physically forbidden ν only, we do not expect
a phenomenon analogous to spontaneous symmetry break-
ing. As the critical limit is defined for fixed microscopic
parameters, we define the turbulent limit for fixed macro-
scopic quantities, i.e., fixed geometry and outer scale L
as well as fixed outer velocity UL. This is the precise def-
inition of what we understand as “Re → ∞”. Thus, ν is
supposed to be the only critical parameter as opposed to
temperature and external magnetic field in critical phe-
nomena; U is analogous to the coupling parameter.

Recognizing this analogy to critical phenomena, the
first step of a RG transformation for turbulence should
eliminate degrees of freedom on the macroscopic scale L,
resulting in a new field Û which is defined in a smaller sys-
tem with size L̂ = L/b where b > 1 is the usual RG rescal-
ing parameter. In the second step the system is rescaled
with b to its original size L′ = bL̂ = L and the equa-
tion of motion should take on the same functional form
with renormalized turbulent velocity fluctuation v′, vis-
cosity ν′, and turbulent profile U′, which is analogous to
the renormalization of the order parameter, the tempera-
ture, and the coupling parameters in critical phenomena.
U should approach a fixed point under renormalization.
The spatial rescaling implies an increase by a factor of b of
all physical microscopic length scales, in particular `′ = b`
for the dissipation length.

Coming back to the central question of intermit-
tency corrections, we give the functional form structure



A. Esser and S. Grossmann: Nonperturbative renormalization group approach to turbulence 471

functions are expected to show for ν → 0:

D(m)(r, ν, L)=

bm (ε?r)m/3
( r
L

)δζm
for `� r� L

D
(m)
0 (ν, L) rm for r � `� L

.

(15)

Here, the energy dissipation rate ε? is supposed to be finite
for ν → 0; this will be defined and discussed later. The
constants bm are also supposed to be finite for ν → 0.
Thus, intermittency corrections are connected to the outer
length scale L, whereas in critical phenomena the critical
exponents’ deviations from their Gaussian values show up
as a dependence of correlation function amplitudes on the
microscopic scale.

The form (15) is also compatible with the concavity
of the curve δζm as a function of m, as a simple applica-
tion of Schwarz’ inequality applied to 〈vm〉 shows, leading
to 2 δζm1+m2 ≥ δζ2m1 + δζ2m2 if L defines the correction
scale, so r/L ≤ 1 [33,59]. But this argument does not
rule out more complicated scenarios such as the simulta-
neous occurrence of L and ` as correction scales. Also, we
have assumed that structure functions are isotropic in the
inertial and viscous ranges despite of an anisotropic ge-
ometry and that they are independent of x2 at least near
the centre of the flow x2 = L/2 where we expect universal
behaviour.

In the preceding section we recognized another macro-
scopic length besides L entering the equation of motion:
the marker trajectories s(t), for which there does not seem
to be an analogue in critical phenomena. To be more pre-
cise, only the s2 component of s is relevant because of
translational invariance in planes parallel to the plates.
We refer to s2(t) as a “dynamic outer length” as opposed
to L being a “geometric outer length”. Because of its time
dependence it cannot function as a correction scale in
(15), but it has to be dealt with during renormalization,
cf. Section 4.

We consider such an inverse RG to make more sense
physically than a formal application of RG procedures for
critical phenomena to turbulence. But this insight does
not tell us how a procedure for eliminating degrees of free-
dom or a field-theoretic RG theory should be constructed.
The main problem is our missing information about the
statistical distribution for the r-velocity fluctuation.

3.2 A new idea

Instead of trying to construct a specific RG procedure based
on some assumed statistical distribution, the new idea of
this work is to make a general ansatz for possible RG
transformations and to examine their scope under phys-
ically motivated constraints.

Instead of specifying a procedure for eliminating de-
grees of freedom, we consider an “arbitrary” transfor-
mation v(r, t) 7→ v′(r′, t′) of the r-velocity fluctuation.
But we demand that the renormalized r-velocity fluctua-
tion v′ obeys “essentially” the same equation of motion.
This will reduce the number of transformations admitted

but, in addition, we have to pose sufficiently many, phys-
ically motivated constraints which reduce the number of
transformations admitted even further such that nontriv-
ial statements about scaling exponents become possible.
Behind this idea is the hope that only a limited amount of
RG transformations is compatible with the Navier-Stokes
equation.

The most important constraint to the equation of mo-
tion for v′ is the invariance of the nonlinear term since the
structure of the nonlinearity is prescribed by hydrodynam-
ics and must not change. To give an example, because of
Galilean invariance u·∇u must not be multiplied by a cou-
pling parameter which changes under RG transformations.
Although the r-velocity fluctuation v itself is Galilean in-
variant, such a variable coupling parameter would contra-
dict the Navier-Stokes equation from which the equation
of motion for v results.

Since the markers’ Eulerian velocity u(s, t) enters the
equation of motion for v, the transformation of this quan-
tity has to be specified, too. We demand that the equa-
tion of motion for u′(s′, t′) shall again be a Navier-Stokes
equation which might differ from that for u only in the
dissipative term. This is even more restricting than what
we demand for the transformation of v. But we allow that
v′ does not have to be a difference of Eulerian velocities u′

according to (8), because otherwise the transformation of
v would be fully determined by that of u, and there would
be no need and no gain to introduce v in the beginning.
Since we believe velocity differences to be of fundamental
importance, we look at the variables v and u as indepen-
dent velocity fields which might “decouple” in the course
of renormalization. Here, we do not see any analogy to
critical phenomena. Note that the representation of the
equation of motion (11) in terms of v, u, and U is unique
if only Eulerian velocities at the current marker position
s(t) enter. Although the reasoning for the invariance of
the nonlinearity is based on the connection between the
equation of motion for v and the Navier-Stokes equation,
we keep this demand also if v and u decouple as outlined
above.

The second big constraint comes from the assumed
special role of energy dissipation. It seems natural to as-
sign the central role which the free energy plays in RG
theory of critical phenomena to the energy dissipation rate
in turbulence [48,51].

The energy dissipation rate (per mass) averaged over
the full flow volume Ω,

εΩ =
ν

2
lim
t→∞

∫ t

t0

dτ

t− t0

∫
Ω

d3x

Ω

(
∂xjui(x, τ) + ∂xiuj(x, τ)

)2

(16)

is a fundamental physical quantity in turbulence since it
equals the energy injection rate εin to maintain dynamical
stationarity. We see it as the analogue to the free energy
density in critical phenomena and expect it to be finite in
the turbulent limit. This corresponds to the widespread
belief that the limit ν → 0 is fundamentally different from
the Eulerian case ν = 0 where εΩ = 0.
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In RG theory of critical phenomena it is not the free
energy density itself which is RG invariant but the total
free energy. For turbulence, we suggest to also make such a
distinction. Since εin = νUL(∂x2U(x2))|x2=0/L (for plane
shear flow) is determined by the mostly nonuniversal be-
haviour of the turbulent profile at the boundaries, εΩ does
not seem to be well suited as a RG invariant quantity. In-
stead, we choose the turbulent energy dissipation rate εt,
which lies at the heart of Kolmogorov-based phenomenol-
ogy, as an analogue to the free energy. To define it, we
start from the mean local dissipation rate

ε(x2) =
ν

2

〈(
∂xjui(x, t) + ∂xiuj(x, t)

)2
〉

(17)

near the centre of fluid motion (x2 ≈ L/2). The averaging
procedure was defined in (7).

We now rewrite ε as a functional of r-velocity fluctu-
ations and split off the dissipation related directly to the
turbulent profile: ε = εU + εt with

εU(x2) =
ν

2

(
∂x2U(x2)

)2

,

εt(x2) =
ν

2

〈(
∂rjvi(r, t) + ∂rivj(r, t)

)2
〉∣∣∣∣

r=0

.
(18)

This splitting is unique since the mixed term involving
both U and v vanishes. The profile’s dissipation εU is
nonuniversal and corresponds to the background term
present in the free energy known from RG theory. But

we do not know if the quantity
∫ L

0
(dx2/L) εU(x2) is ana-

lytic in ν as its correspondence to the background term in
the free energy density, being analytic in the temperature,
demands. We remark that εt equals the energy dissipation
rate coming from the fluctuations u−U, i.e.,

εt(x2) =

ν

2

〈(
∂xj
(
ui(x, t)− Ui(x)

)
+ ∂xi

(
uj(x, t)− Uj(x)

))2
〉
.

This turbulent energy dissipation rate εt shall be our “RG
invariant quantity”. This means two things, again analo-
gous to RG theory for critical phenomena: first, any RG
transformation should preserve the functional structure of
εt when written as a functional of v(r, t) with parameters
ν, x2, and L – except for an additive, v independent con-
tribution. This corresponds to the functional invariance
of the free energy density; again up to an additive, order
parameter independent contribution. The main difference
to critical phenomena is the missing knowledge about the
probability distribution functional for v(r, t). Instead, we
work with the purely formal expression (18) for εt. Note
that this might not be the same as using the definition (17)
since v and u might be transformed differently. Second,
and corresponding to the invariance of the free energy,
the additive constant is put into ε′U such that the renor-
malized value ε′ of the local dissipation rate equals the
original value ε:

ε′ = ε′U + ε′t = εU + εt = ε. (19)

The aforementioned ε? is now defined to be the turbulent
limit of εt, i.e., ε? = εt|ν→0 and is also assumed to be
finite for ν → 0. For K41 scaling behaviour we identify the
Kolmogorov length η = (ν3/ε?)1/4 with the dissipation
length `, up to a dimensionless factor which is assumed to
be a finite constant for ν → 0. If there are intermittency
corrections, however, ` should depend in a nontrivial way
on ν, just as the correlation length scales nontrivially with
the temperature parameter. On the other hand, the RG
transformation behaviour should be `′ = b` (analogous to
a decrease of the critical correlation length by a factor b),
whereas in general η′ 6= bη if ν scales nontrivially.

The other constraints are of minor importance and
will be mentioned in the course of fully specifying our RG
method in the following sections.

But before going into the details we can already infer
some of the advantages and disadvantages of such an RG
approach. Since the forcing enters only structurally in the
equation of motion for v, and we do not actually eliminate
degrees of freedom, we cannot expect to be able to really
calculate non-trivial scaling exponents. This, for critical
phenomena, is only achievable since much more knowledge
about the forcing, coming from thermodynamics, is made
good use of. But we hope to learn if and how the lack of a
boundary enforces the classical exponents and if there are
universal relations between exponents. In our approach,
we assume the validity of the “inverse RG” analogy to
critical phenomena. The existence of RG transformations
with the desired properties including consequences of sym-
metries is assumed, not shown by construction. Despite
these disadvantages, we overcome several shortcomings of
previous RG methods in turbulence. We do not have to
know the probability distribution for some velocity field or
make wild assumptions about it. Our method is nonper-
turbative which is nice since fully developed turbulence
has no obvious expansion parameter.

4 RG transformation

We come to the actual presentation of our RG method
for turbulence, following the spirit of the previous section.
Because of the invariance of the nonlinearity the origi-
nal equation of motion and its renormalized counterpart
should have the following form (primes denote renormal-
ized quantities):

∂tv + SD[v·∇rv] = L[v] ≡ ν S[∆rv] + F [v], (20)

∂t′v
′ + SD′[v′ ·∇r′v

′] = L′[v′] ≡ ν′ S[∆r′v
′] + F ′[v′].

(21)

Here, the terms linear in v, respectively v′, are combined
by introducing an inhomogeneous linear operator L, re-
spectively L′. Renormalization of forcing and dissipation
expresses itself as L′ 6= L. Besides ν′ > ν, one expects to
find structurally new terms, which we initially consider as
part of F ′ 6= F . They have to be interpreted as “dissipa-
tive” or “driving” on an individual basis.

In order for equation (21) to make sense, the transfor-
mation of r, t, v, s(t), and u has to be defined. Finding
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transformations such that (21) has the prescribed struc-
ture is the main goal of Sections 4 and 5. We begin with
discussing the parameters which these transformations
may depend on.

An important assumption is the regularity of RG
transformations for ν → 0. For critical phenomena, the
analogous regularity in the temperature approaching the
critical temperature is a main achievement of RG theory.
In this work we concentrate on the universal scaling be-
haviour in the inertial range and thus may already carry
out the limit ν → 0 in the transformation. Effectively, it
suffices to take ν independent transformations. As long
as we do not look at multiple-time correlations of v, we
assume that the transformations do not have to be t de-
pendent. But r should be admitted, as well as both outer
lengths L and s2(t) since all these are nonuniversal. Dis-
missing s1 and s3 takes into account geometric symme-
tries, and the possible dependence on s2(t) allows an im-
plicit time dependence. We even start with the admission
of all components of s in order to study the consequences
of the restriction to s2 later. Note, however, that we will
not enforce this restriction for the transformation of u; it
will be allowed to depend on all components of s. With
the prelude in mind, we come to the specification of our
ansatz for RG transformations.

4.1 Space and time

Spatial distances are just rescaled:

r′ = (1 + σ)r +O(σ2),

thus ∂r′i = (1− σ)∂ri +O(σ2). (22)

The RG rescaling factor b = 1 + σ deviates only infinites-
imally from 1 by the RG flow parameter σ. Experience
with critical phenomena teaches that such infinitesimal
RG transformations usually exist and are even easier to
deal with. Because the RG transformation shall be inverse,
we have r′ > r. For time differences we will also begin with
a simple rescaling ansatz,

t′ = t+ σ (t− t0) z +O(σ2), (23)

with a single constant scaling exponent z. In a supplement
to Section 5.1 we will examine a more general transforma-
tion of r and spatially varying z.

4.2 Marker trajectories

Because of the presence of the marker trajectories
s(t|x0, t0) in the equation of motion we have to specify how
they shall transform in spite of not knowing a correspond-
ing quantity in critical phenomena. Since the trajectories
are nonuniversal their transformation could and should be
different from the transformation (22) of distances r.

Because the trajectory’s position s(t) enters the argu-
ment of the Green function in (12), its transformation is
linked to that of the geometry. We demand that the geom-
etry, and thus the Green function, is RG invariant. This

corresponds to keeping the geometric structure of the mi-
croscopic lattice fixed in critical phenomena. On the other
hand, the RG transformation should change the nature of
the forcing as it changes the microscopic interaction for
critical phenomena. Thus, keeping the geometry invariant
actually assumes that all renormalization of the forcing
can be covered by a change of the linear forcing F . Be-
cause of this invariance of geometry and L′ = L we have
to define D′ in (20) to be

D′i[q](r, t) = qi(r, t)

−

∫
Ω(s′(t′))

d3ρ′ ∂r′iGΩ(r′ + s′(t′),ρ′ + s′(t′)) ∂ρ′j qj(ρ, t).

(24)

The most simple way to satisfy this geometric invariance is
to keep the marker’s position the same, i.e., s′(t′) = s(t).
For a fixed fluid element serving as the marker this is
impossible since the dynamics and the trajectory of a fixed
marker change inevitably under RG transformations. But
we may allow the marking fluid element to change. We
choose, for every time t, a marker with initial position x′0
such that

s(t) ≡ s(t|x0, t0) = s(t′|x′0, t0) ≡ s′(t′). (25)

This definition is unique because of the one-to-one cor-
respondence of initial positions x0 and current positions
s(t|x0, t0) for all t. It also guarantees s′(t′) ∈ Ω. The set
of all transformed trajectories s′ naturally defines an Eu-
lerian velocity field

u′(s′, t′) = ṡ′ ≡ ∂t′s
′(t′|x′0, t0)

∣∣
x′0

(26)

which should satisfy a Navier-Stokes equation. We will
cover the transformation of u in Section 6.2.

Going from x0 to x′0 enforces to also relate the trans-
formed fluctuation v′ to a marker with initial position x′0
instead of x0. Therefore the time derivative ∂t′v

′ in (21)
has to be taken with fixed x′0. From equations (23, 25, 26)
we then find

∂t′ ≡ ∂t′
∣∣
r′,x′0

= (1− σ z) ∂t
∣∣
r,x0

+ [u′ − (1− σ z) u]·∇s

∣∣
r,t

+O(σ2)

= (1− σ z) ∂t
∣∣
s,r

+ u′ ·∇s

∣∣
r,t

+O(σ2). (27)

4.3 Statistical averages

Mean values 〈f〉′ are defined analogously to (7) with the
corresponding transformed quantities. For the transforma-
tions defined so far we simply have 〈f〉′ = 〈f〉. To see this,
we only have to look at the spatial averaging:∫

2|s′i(τ
′)−xi|≤a′

d3x′0
a′3

=

∫
2|si(τ)−xi|≤a′

d3x′0
a′3

=

∫
2|si(τ)−xi|≤a

d3x0

a3

[
1− 3σ + σ

a

2

∑
j

[δ(sj−x0;j−
a
2 )

+ δ(sj − x0;j + a
2 )] +O(σ2)

]
.
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Here we made use of (25) and a′ = (1 +σ)a+O(σ2). The
latter holds because a is a microscopic length which should
be rescaled within an inverse RG theory with a factor b
(with no nontrivial exponent, cf. Sect. 3.1) – independent
of possible intermittency corrections because we identify
this formal parameter a with a physical quantity, namely
the linear size of fluid elements, which we also designate
as the hydrodynamic length scale. The formal limit a→ 0
corresponds to a � `, i.e., one is only interested in the
hydrodynamic length being smaller than the dissipative
scale. This role of a is analogous to that of the system size
L in critical phenomena, where the case L exceeding the
correlation length is of main interest. Just as finite size
effects do not change the critical exponents, we expect
intermittency exponents to be independent of effects on
scales less than a.

We now assume that the surface averages represented
by the terms with a delta function equal the full average
〈 〉, at least after taking the time average and limits ac-
cording to (7). Then all terms of order O(σ) cancel and
we arrive at 〈f〉′ = 〈f〉+O(σ2).

4.4 r-velocity fluctuations

The crucial part of our ansatz is the transformation for
the r-velocity fluctuations mapping v(r, t|s) to v′(r′, t′|s′).
This shall be realized through a linear transformation op-
erator T which expresses the abstract elimination of de-
grees of freedom and the subsequent rescaling:

v′ = v + σT [v] +O(σ2). (28)

The linearity of T avoids terms more-than-quadratic in
v in the equation of motion. T will in general not be a
simple rescaling, but may transform v and its derivatives
differently. This takes care of the possibility that different
orders of turbulent velocity derivatives might be indepen-
dent scaling fields. Such additional scaling fields would be
analogous to the additional order parameters in dynami-
cal critical phenomena introduced by conserved quantities
relevant on the large scales.

Of course, we have to specify an explicit expression for
T . It shall cover all linear differential operators of finite
order in r, s, and L. This choice is not motivated physi-
cally.

Ti[v] =
N∑
n=0

M∑
m=0

[
α

(n,m)
i,j;k1,... ,kn

∂rk1
· · · ∂rkn∂

m
L

+ β
(n,m)
i,j;k1,... ,kn

∂sk1
· · · ∂skn ∂

m
L

]
vj . (29)

The derivatives ∂si and ∂L are defined with r kept fixed
according to

∇s ≡∇s

∣∣
r,t,L

= (∇x0s
∣∣
t,L

)−1 ·∇x0

∣∣
r,t,L

,

∂L ≡ ∂L
∣∣
r,t,s

= ∂L
∣∣
r,t,x0

− ∂Ls
∣∣
t,x0
·∇s

∣∣
r,t,L

.
(30)

This is well-defined since the uniqueness of the marker
trajectories allows to unambiguously rewrite v as a func-
tion of s instead of x0. It should be stressed that the time
derivative in the equation of motion for v and w is not
taken with constant s, but x0, i.e., ∂t ≡ ∂t

∣∣
r,x0,L

. The

characteristic property of v (and w) being velocity dif-
ferences, cf. (8), allows to express s derivatives through r
derivatives:

∂siv = S[∂riv], ∂si∂rjv = ∂ri∂rjv, etc. (31)

Because of this “difference property” mixed derivatives in
r and s are not independent and thus omitted from (29).

The coefficients α
(n,m)
i,j;k1,... ,kn

and β
(n,m)
i,j;k1,... ,kn

are (contin-

uously differentiable) functions of r, L, and s (later s2

only). Without loss of generality we can set β
(0,m)
i,j = 0 and

assume these coefficients to be symmetric in the indices
k1, . . . , kn. The finiteness of M and N will not be used
explicitly, but in order to find or exclude solutions for T
with infinitely many contributions in (29), we would have
to study questions of convergence and exchange of limits
in a suitably chosen function space.

It seems reasonable that v′ should have the same basic
properties as v. Obviously v′ has to be divergence free and
has to vanish for r′ = 0. We also demand a zero mean of v′

as a consequence of homogeneity. Furthermore, we try to
preserve the difference property. But if u′ and v′ decouple
as argued in Section 3.2 this constraint could or should
be relaxed. These four properties lead to corresponding
constraints for T :

∇r ·T [v] = 0 for ∇r ·v = 0 (divergence freeness),

(32)

T [v]
∣∣
r=0

= 0 for v(0, t) ≡ 0 (origin), (33)

〈T [v]〉 = 0 for 〈v〉 = 0 (homogeneity),
(34)

(S∇r −∇s)T [v] = S∇rv (35)

for ∇sv = S[∇rv] (difference characteristic).

They are not automatically fulfilled by the ansatz (29)
and will be enforced later (Sect. 5.1).

4.5 Eulerian velocities

Since the Eulerian velocity u′ defined in (26) should fol-
low a Navier-Stokes equation and because of the formal
similarity to the equation of motion for v, we employ a

transformation T̃ for u analogous to T :

u′ = u + σT̃ [u] +O(σ2),

T̃i[u] =
Ñ∑
n=0

M̃∑
m=0

α̃
(n,m)
i,j;k1,... ,kn

∂sk1
· · ·∂skn ∂

m
L uj.

(36)

The coefficients α̃
(n,m)
i,j;k1,... ,kn

are functions of s and L and
each is symmetric in the indices k1, . . . , kn without loss of
generality. Divergence freeness of u′ leads to the constraint

∇s ·T̃ [u] = 0 for ∇s ·u = 0. (37)
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5 Invariance of the nonlinearity

After having specified the transformation, we can apply
it to the equation of motion for v. But at first, only the
linearity of T is used, and we introduce the abbreviations
P = SD and P ′ = SD′. After inserting equations (22, 27,
28) into the lhs of (21) and ∂tv from (20) we find

∂t′v
′ + P ′[v′ ·∇r′v

′] = (1− σz + σT )L[v] + σṪ [v]

+ (u′ − (1− σz)u)·∇sv + σ(z − 1− T )P [v·∇rv]

+ σδP [v·∇rv] + σP
[
T [v]·∇rv + v·∇rT [v]

]
+O(σ2)

!
= L′[v′] +O(σ2).

Here, δP is defined through P ′ = P+σ δP+O(σ2) and Ṫ
is an abbreviation for ∂tT −T ∂t. The nonlinear terms have
to cancel out, since L′ is supposed to be inhomogeneous
linear in v:

P
[
T [v]·∇rv + v·∇rT [v]

]
− T P [v·∇rv] =

− ((z − 1)P + δP)[v·∇rv]. (38)

This inhomogeneous linear constraint for the operator T
is at the heart of our RG approach for turbulence. We call
such a constraint the “nonlinearity constraint”. From the
remaining terms and because of L′[v′] = L′[v]+σLT [v]+
O(σ2) we infer an equation which determines L′:

L′[v] = (1− σz)L[v] + σ(T L − LT )[v] + σṪ [v]

+ (u′ − (1− σz)u)·∇sv +O(σ2). (39)

It will be analyzed in Section 6. The inhomogeneous lin-
earity of L′ will then be confirmed a posteriori.

We were not able to find the general solution of the
nonlinearity constraint (38) within the ansatz (29). The
main difficulties arise from the nonlocality of the projec-
tor P . We therefore first look for solutions which fulfill a
simpler constraint, namely we ignore the pressure term.
The resulting modification of the nonlinearity constraint
allows us to find its general solution. Formally, this means
to substitute the identity operator for P and to set δP to
zero in (38). This leads to the considerably simpler con-
straint

T [v]·∇rv + v·∇rT [v] − T [v·∇rv] = −(z − 1)v·∇rv.
(40)

In a second step, we demand that the solution T of (40)
meets the full nonlinearity constraint (38). Thus, the ef-
fects of pressure are only taken care of subsequently. For
this second step it is sufficient that

(T P − PT )[q] = δP [q] for q = v·∇rv. (41)

In general, this constraint will reduce the set of solutions.
The geometry of the flow volume enters only here. One
should keep in mind that this two-stage method might
not find all solutions of (38). For example, there might
exist additional solutions where the pressure term and the
local nonlinear term “mix” or the equality in (40) holds
only except for a divergence free, additive term.

5.1 Neglecting pressure

Determining the solutions of (40) is quite tedious and bor-
ing. The lhs is calculated for all terms of the sum in ansatz
(29). It is assumed that all components of v and all their
derivatives are independent from each other – except for
derivatives which are coupled because of the divergence
freeness and must be reexpressed through independent
derivatives. Then, (40) must be individually fulfilled by
all terms with a common derivative structure. More cal-
culational details of this straightforward procedure can be
found in the Appendix. Here, we proceed to the result: the
general solution of (40) may be written in the form

Ti[v] = αi,j vj − [(z − 1)rj + αj,k rk − γj ](∂rjvi)

+ βj∂sjvi + βL∂Lvi (42)

with 17 free parameters αi,j , γj, βj , βL, and z, which are
arbitrarily depending on s and L (except for z = const).
The αi,j are dimensionless, whereas γj , βj , and βL carry
the dimension of a length. It should be noted that di-
vergence freeness is not relevant for this result: the same
general solution holds if one assumes all derivatives to be
independent of each other.

Now we have to check the constraints (32–35). The
divergence constraint (32) and the homogeneity constraint
(34) are automatically fulfilled by all transformations (42).
The origin constraint (33) demands γj = 0 for all j =
1, 2, 3. The difference constraint (35) leads to

(S∂rl − ∂sl)Ti[v] =

− [(z − 1)δj l + αj,l + (∂slβj)]S∂rjvi + γj∂rj∂rlvi
∣∣
r=0

−
{

(∂slαi,j)vj − [∂sl((z − 1)δj k + αj,k)]rk ∂rjvi

+ (∂slγj)∂rjvi + (∂slβL)∂Lvi
} !

= S∂rlvi.

The terms in curly brackets all have a different structure
and must vanish individually. Consequently, all coefficient
functions except βj must be independent of s, i.e., they
are free constant numbers, which is compatible with the
constantness of z. From the remaining terms we find again
γj = 0 and a linear dependence of βj on s:

βj = −z sj − αj,l sl + β0;j with β0;j = const . (43)

We see that the difference constraint restricts the admit-
ted transformations considerably. This goes as far as en-
forcing a dependence on all components of s which con-
tradicts our desire of a sole s2 dependence. Later on, we
will therefore also consider weaker forms of the difference
constraint. In the extreme case of ignoring this constraint
we have to generalize the ansatz (29) to include mixed
derivatives with respect to s and r. But this does not lead
to a more general solution (42); the difference constraint
does not change the solutions for T in the pressureless
case.

Supplement: anisotropic rescaling

Imagining a definite RG transformation with elimina-
tion of degrees of freedom in a thin boundary layer,
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an anisotropic rescaling of spatial distances seems much
more appropriate than the isotropic rescaling adopted
from critical phenomena. We therefore repeat the preced-
ing calculations with

r′i = ri + σRi,jrj +O(σ2), Ri,j = const .,

instead of (22). Since σ is only determined up to an ar-
bitrary constant factor, we may choose to fix one of the
parameters Ri,j , e.g. R2,2 = 1. This general ansatz in-
cludes the physically motivated case Ri,j = δi,2δj,2. We
indeed find a solution generalizing (A.5):

α
(1)
l = −(α

(0,0)
l,j −Rj,l)rj − z rl + γl

with γl independent of r.

But the full solution for T corresponding to (42) complies
with the divergence constraint (32) only for Ri,j = δi,j .
We conclude that the isotropic nature of incompressibility
enforces an isotropic rescaling of r, at least for the set of
transformations found so far.

Supplement: spatially varying z exponent

A crucial but perhaps too restrictive assumption is the
necessity of only a single dynamical exponent z, which
might be a speciality of critical phenomena and not valid
for turbulence. We therefore might try to use a position de-
pendent exponent z(s(t)/L) exploiting the fact that there
seems to be no quantity analogous to s in critical phe-
nomena. Without elaborating on all details (cf. Ref. [60])
here we just mention that such a generalized z is compat-
ible with the transformations T considered so far, but im-
plies homogeneity and difference constraints which cannot
be trivially satisfied. The main problem, though, comes
from the nonlinearity constraint upon the transformation

T̃ for u which will be dealt with in Section 6.2. It enforces
z = const ., and so we shall not pursue this idea further.

5.2 Invariance of the pressure term

Now we perform the second step where we have to make
sure the commutator constraint (41) holds. One verifies
very easily that T commutes with S (since γj = 0), and
it suffices to check to exchangeability of T with D under
the action of S:

S(T D −DT − δD)[q] = 0 for q = v·∇rv. (44)

Here, we define δD through D′ = D+σ δD+O(σ2). After
integration by parts we find from (12, 42) for any Green’s
function GΩ

(T D −DT − δD)i[q] =

−

∫
Ω(s)

d3ρ

{
(αi,j + αj,i)

(
∂rjGΩ(r + s,ρ+ s)

)
− ∂ri

[(
z (rj∂rj + ρj∂ρj + 1) + αj,k (rk∂rj + ρk∂ρj + δj k)

− βj∂sj − βL∂L
)
GΩ(r + s,ρ+ s)

]}(
∂ρlql(ρ, t)

)
. (45)

This expression can now be evaluated for different Green
functions corresponding to different geometries. Although
we would like to focus on plane shear flow because of its
physical significance, we will also study an “infinite” sys-
tem which is similar to what is considered in most other
theories of turbulence. This strategy enables us to get in-
sight about the consequences of the presence of bound-
aries.

Let us first consider the infinite system’s Green func-
tion,

GΩ(x, ξ) 7→ Gf (x, ξ) = −
1

4π

1

|x− ξ]
· (46)

We prefer to call this substitution an “approximation” to
the plane shear case since a truly infinite turbulent system
does not make sense within our framework with its phys-
ical forcing. Effects due to the boundary conditions and
the finiteness in one space direction are neglected. There-
fore, we keep the transformation (25) of s for the infinite
system although the reasoning for it is not transferable
since D is independent of s. With the help of the relation

(rj∂rj + ρj∂ρj + 1)Gf (r,ρ) = 0 (47)

the commutator (45) can be evaluated as

(T D −DT − δD)i[q] =

−

∫
Ω(s)

d3ρ

{
3
∑
j<k

(αj,k + αk,j)
(rk − ρk)(rj − ρj)

|r− ρ|2

− αj,j

(
1− 3

(rj − ρj)2

|r− ρ|2

)}(
∂riGf (r,ρ)

)(
∂ρlql(ρ, t)

)
.

The commutator constraint (44) holds only if

αj,k = −αk,j for j 6= k and αj,j independent of j.
(48)

This expresses the rotational symmetry of the problem.
Translational invariance and the absence of a length

scale set by the boundary conditions are responsible for
the independence ofGf (r+s,ρ+s) of s and L. We demand
this independence also for the transformation T :

αi,j , z independent of s, L and βj = βL = 0.

This contradicts the difference constraint (43) (except for
the uninteresting case αi,j = z = 0). In order to avoid s
dependent transformations, one has to give up the differ-
ence constraint. This seems reasonable with respect to the
decoupling of v and u discussed in Section 3.2. Then, the
general solution (42) may be written in the form

Ti[v] = αi,j vj − α1rj∂rjvi

−
1

2

∑
j 6=k

αj,k (rk∂rj − rj∂rk)vi, (49)

α1 = z − 1 + α0, α0 = αj,j , (50)

with 5 independent, constant and dimensionless parame-
ters α1,2, α1,3, α2,3, α1, and z.
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Now we turn to the physically relevant case of plane
shear flow. For its Green function GΩ, equation (10),

(rj∂rj + ρj∂ρj + s2∂s2 + L∂L + 1)GΩ(r + s,ρ+ s) = 0
(51)

holds instead of (47). The complete evaluation of the com-
mutator constraint (45) leads to a rather complicated ex-
pression for which it is difficult to find all solutions. But
we find (45) to be satisfied by all transformations T with

α1,2 = α2,1 = α2,3 = α3,2 = 0, α1,3 = −α3,1,

α1 as in (50), β2 = −(1 + α1)s2, βL = −(1 + α1)L.
(52)

For this, one only needs to know that GΩ has to adopt
the form

GΩ(r+s,ρ+s) = G̃Ω
(
(r+s)/L, (ρ+s)/L

)
/L

because of dimensional reasons and that GΩ depends on
r1, ρ1, r3, and ρ3 only in the combination (r1−ρ1)2 +(r3−
ρ3)2 because of translational invariance in planes parallel
to the plates.

Due to this symmetry we additionally demand that
the transformation should not depend on s1 and s3 as dis-
cussed before. This allows for explicitly space dependent
transformations with

αi,j(s2/L) independent of s1, s3 and β1 = β3 = 0.

But this space dependence again contradicts the difference
constraint. Once more, we decide to give up this constraint
in favour of obtaining a different set of admissed transfor-
mations which can be written in the form

Ti[v] = α0 vi + α1,3(δi,1v3 − δi,3v1)− α1rj∂rjvi

− α1,3(r3∂r1 − r1∂r3)vi

− (1 + α1)(s2∂s2 + L∂L)vi (53)

with 3 independent and dimensionless parameters, namely
α1,3 and α1, depending on s2/L, and constant z. Unfor-
tunately, we can not come up with a satisfactory physical
interpretation of this transformation yet.

6 Transformation of dissipation and forcing

Having found sets of admitted transformations, equa-
tions (49, 53) respectively, we transform the linear part
L′ of the equation of motion for v.

6.1 Viscosity

We begin with the calculation of (1−σz)L+σ(T L−LT )
in (39) for the viscous part νS∆r of L in the case of plane
shear flow:

(1− σz)νS∆rv + σ(T νS∆r − νS∆rT )v =

(1 + σ(2α1 − z))νS∆rv +O(σ2).

Taking into account the rescaling of ∆r we find ν′∆r′v
′ to

be a renormalized viscous contribution to L′[v′] with the
rescaled viscosity

ν′ = (1 + ζν σ)ν +O(σ2) with ζν = 2(1 + α1)− z.
(54)

Here, the symmetry properties of the parameters αi,j , cf.
equations (48, 52), have to be used explicitly. This result
also holds for z(s2/L) and also for the infinite system ap-
proximation. In the former case ν has to be generalized to
a function of s2/L.

Since the viscous part of L is reproduced with exactly
the same structure, we can safely regard all other terms in
(39) as contributions to the renormalized forcing F ′. The
property ν′ > ν of an inverse RG transformation implies
the constraint ζν > 0.

6.2 Forcing

The admitted transformations T̃ for the Eulerian velocity
u which are covered by the ansatz (36) can be deduced
easily from the results of Section 5 because of the formal
similarity of the Navier-Stokes equation and the equation
of motion for v:

T̃i[u] = α̃i,j uj − [z sj + α̃j,k sk](∂sjui) + β̃L∂Lui. (55)

The parameters α̃j,k and β̃L are geometry dependent in
the same way as αi,j and βL, but in any case have to be
independent of s. In general, the viscosity in the Navier-
Stokes equation rescales with a different scaling factor and
therefore will be denoted with the new symbol ν̃:

ν̃′ = (1 + ζ̃ν σ)ν̃ +O(σ2) with ζ̃ν = 2(1 + α̃1)− z.
(56)

Next, we calculate the last two terms in (39). First we

look at Ṫ for plane shear flow. In the most simple case of
constant parameters α0, α1, and α1,3 we find from (53)

Ṫ = ∂tT − T ∂t
= −(1 + α1) [u2∂s2 − s2(∂s2u)·∇s − L(∂Lu)·∇s] .

(57)

Here, we made use of the commutators ∂t∇s − ∇s∂t =
−(∇su) ·∇s and ∂t∂L − ∂L∂t = −(∂Lu) ·∇s which fol-

low from definition (30). We see that σṪ has the same
structure as (u′ − (1− σz)u) ·∇s in (39), but these two
contributions to F ′ have a different structure than the re-
maining contribution σ(T F − FT ), since the former do
not contain the turbulent profile U. Thus, they describe
structurally new, additional forces (per mass). Since such
an additional forcing is compatible with the idea of our
RG approach, one should study how it behaves under the
RG transformations’ next iteration. We now show for one
specific example that structurally new terms appear with
each RG iteration. A term in (57) like s2(∂s2u)·∇s in F
results in a contribution

−σ (1 + α1)(s2)2 [(∂s2∂s2u)·∇s − (∂s2u)·∇s ∂s2 ]
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to F ′ from σ(T F − FT ). One easily sees that with each
iteration a new contribution with an additional s2 deriva-
tive is created. The same holds true for nonconstant α
parameters which make appear even more distinct forcing
terms. One might try to somehow get rid of this addi-
tional forcing. We thoroughly analyzed several possibili-
ties which all resulted in the necessity to give up one or
the other fundamental requirement [60]. We conclude that
the appearance of additional forcing terms is inevitable,
although we could not further analyze the transformation
behaviour.

We are now able to calculate the turbulent profile, that
is the mean value of the transformation (55) for u. For
plane shear flow we have U ′2 = 0 and

U ′i = Ui + σ{α̃i,j Uj − (α̃0 + z)x2∂x2Ui

+ β̃L∂LUi}+O(σ2), (i = 1, 3). (58)

Unfortunately, this equation does not allow a unique de-
termination of the profile. But all profiles which take on
the functional form U∗ = ULf(x2/L) and are bounded for
all x2 and ν → 0 are admissible solutions of (58) (with
α̃0 = 0). In the remaining part of this work, we will con-
sider only this case α̃0 = 0.

Finally we are in the position to discuss the total trans-
formation of the forcing F . The calculation of the remain-
ing contribution (1− σz)F + σ(T F − FT ) in (39) shows
that F would be structurally reproduced (except for the
additional forcing discussed above), if

U ′i = Ui + σ{αi,j Uj − (α0 + z)x2∂x2Ui

+ βL∂LUi}+O(σ2), (i = 1, 3)

would hold. Since this is not true (cf. Eq. (58)) yet an-
other, U dependent type of additional forces appears.

We conclude that a closed, iterable RG equation for the
forcing F does not seem to exist. Clearly, more work on
the transformation properties of the forcing is necessary.
For example, one would have to examine if the additional
forces are irrelevant in the sense of RG theory. Also, a
restriction of U such that the iteration becomes closed
could be possible.

7 Energy dissipation and structure functions

We are done with the transformation of the equations of
motion for v and u. This enables us to look how phys-
ical quantities, more specifically energy dissipation and
structure functions, behave under the set of admitted RG
transformations for v, namely (49) with the parameters
α1,2, α1,3, α2,3, α1, and z for the infinite system and (53)
with the parameters α1,3, α1, and z for plane shear flow,
respectively.

7.1 Invariance of energy dissipation

The transformed turbulent dissipation rate εt is obtained
from the representation (18) and the RG transformation

(42), depending on the choice for the parameters αi,j , βj ,
and βL.

For the infinite system approximation our requirement
of structural invariance of εt is fulfilled automatically, ex-
cept for a simple rescaling:

ε′t(ν
′) = (1 + ζεσ) εt(ν) +O(σ2)

with ζε = ζν + 2(α0 − 1− α1). (59)

Structural invariance is most naturally satisfied by setting
ζε = 0, and this also keeps the value of εt the same:

ε′t = ε′t(ν
′) = εt(ν

′) = εt(ν) = εt.

Because of our second invariance constraint for the energy
dissipation, ε′ = ε, the value of the profile’s dissipation
is invariant as well, ε′U = εU . But we do not have any
knowledge about the functional structure of ε′U(ν′) as long
as we do not know how to handle the transformation of
the forcing.

For plane shear flow the structure of εt does not repro-
duce itself:

ε′t(ν
′, x2, L,U

′) = [1 + ζεσ − σ(1 + α1)(x2∂x2 + L∂L)]

× εt(ν, x2, L,U) +O(σ2). (60)

The contributions in addition to (59) are interpreted as
nonuniversal since they are related to the boundaries of
the system, and are therefore put into ε′U :

ε′U = ε′U(ν′, x2, L,U
′) + σ(1 + α1)(x2∂x2 + L∂L)

× εt(ν, x2, L) +O(σ2).

Again we set ζε = 0 to guarantee structural invariance of
εt, i.e., εt(ν

′) = εt(ν).
In both cases the condition ζε = 0 serves as an ad-

ditional constraint for the RG transformations T which
allows to eliminate one parameter which we choose to
be α0. Using ζν from (54) and α0 from (50) we find
α0 = (1/3)(1+α1) and z = (2/3)(1+α1) with the only re-
maining free parameter α1. This value for z gives us ζν =
(4/3)(1 + α1), which is different from ζ̃ν = (2/3)(1 + α1).
This means that ν, the kinematic viscosity damping the r-
velocity fluctuations, and ν̃, responsible for viscous losses
of the Euler field, scale differently.

7.2 Scaling behaviour of structure functions

Finally we come to the transformation of the structure
functions D(m), defined in (14), and their inertial range
scaling. Contrary to εt we demand the same functional
form for plane shear flow and the infinite system, i.e.,
D(m)′(r′, ν′, x2, L) = D(m)(r′, ν′, x2, L), thus not allowing
for an additive renormalization.

Again we start with the infinite system and find for
the set of admitted transformations

D(m)(r′, ν′) = {1 + σ[mα0 − (α1rj +
∑
k 6=j

αj,k rk)∂rj ]}

×D(m)(r, ν) +O(σ2). (61)
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We seek for scaling solutions to this RG equation in the
limit ν → 0 which obey the geometric symmetries of the
infinite system, i.e., depend on r = |r| only. Then, (61)
simplifies to

D(m)(r′, ν′) = {1 + σ[mα0 − α1r∂r ]}D
(m)(r, ν) +O(σ2).

Because L is assumed to be the only scale for intermit-
tency corrections, only solutions are sought which are
bounded for ν → 0 with r 6= 0 fixed. Using r′ = (1 + σ)r
on the lhs, the unique solution then is

D(m)(r) ∝ rζm with ζm =
mα0

1 + α1
=
m

3
· (62)

It is not surprising that K41 behaviour is enforced since
the admitted RG transformations for v turned out to be
independent of L. But this result at least confirms consis-
tency of all assumptions behind our method.

For plane shear flow the RG equation

D(m)(r′, ν′, x2, L)={1+σ[mα0−(α1rj+
∑

j 6=2,k 6=2

αj,k rk)∂rj

− (1 + α1)(x2∂x2 + L∂L)]}

×D(m)(r, ν, x2, L) +O(σ2) (63)

holds. Here, respecting again the geometric symmetries,
we are looking for solutions depending on r, x2, and L
alone, thus simplifying (63) to

D(m)(r′, ν′, x2, L) = {1 + σ[mα0 − α1r∂r

− (1 + α1)(x2∂x2 + L∂L)]}

×D(m)(r, ν, x2, L) +O(σ2).

All solutions bounded for ν → 0 can be represented in this
limit as

D(m)(r, x2, L) ∝ rm/3fC(r/L, x2/L),

with arbitrary function fC . (64)

This allows for scaling solutions of the type D(m) ∝ rζm

with arbitrary inertial range exponents ζm. Within our
method we could not yet identify more constraints which
would restrict the exponents or even nail them down to a
specific value.

8 Summary and discussion

8.1 Summary of the calculations

The results of Sections 4 to 7 can be summarized as fol-
lows: with a quite general ansatz for the transformation T
for the r-velocity fluctuations v we evaluate the nonlinear-
ity constraint originating in the invariance of the nonlinear
term of the equation of motion. First this is done ignoring
the pressure term which restricts T to a class of solutions
with 17 parameters which are allowed to depend on s(t)

and L (except for the dynamical exponent z which must
be constant). All further conclusions were drawn for this
set of transformations. The difference constraint which ex-
presses that v is a difference of two Eulerian velocities is
abandoned since it turns out to be incompatible with a de-
pendence of T on s(t) according to geometric symmetries.
This is somewhat surprising and means that the renor-
malized r-velocity fluctuations decouple from the Euler
field to become quantities of their own significance. Tak-
ing into account a commutator constraint for T which
guarantees the structural invariance of the pressure term
and some other constraints restricts the set of solutions
further. The number of free parameters is reduced to five
constants α1,2, α1,3, α2,3, α1, and z for the infinite system
and to one constant z and two functions α1,3 and α1 of
s2/L for plane shear flow.

The invariance of the geometry under renormalization
suggests a simple transformation of the marker trajec-
tories which may be loosely referred to as s′ = s. We

find a transformation T̃ for the Eulerian velocity u which
preserves the structure of the nonlinearity of the Navier-
Stokes equation. It introduces four new constant param-
eters for the infinite system and two new constant pa-
rameters for plane shear flow. The RG equation for the

turbulent shear profile advises a special choice for T̃ . The
viscous term of both equations of motion for v and u re-
produces structurally, but with differently rescaled viscosi-
ties ν respectively ν̃. But for the forcing F several types of
structurally new terms appear whose physical meaning is
not yet understood. We accept such additional forcing, but
do not examine it further at present. Neither the specifica-
tion of a closed RG equation for F nor even its existence
can be established as matters stand, and we only consider
solutions T with constant parameters. The second impor-
tant restriction coming from the invariance of the energy
dissipation rate is fulfilled by setting the rescaling expo-
nent of the structurally reproducing part of the turbulent
dissipation rate to zero. This eliminates one parameter
of T .

The RG equations for the structure functions are ex-
amined for inertial range solutions with prescribed sym-
metries corresponding to the geometry of the flow. For the
infinite system only K41 scaling exponents turn out to be
allowed, whereas for plane shear flow there are scaling so-
lutions with yet arbitrary exponents. This is an indication
that intermittency corrections really require the existence
of an outer length scale. But neither can the scaling expo-
nents be calculated with this RG method, at least not in
its present stage, nor can a physical mechanism for inertial
range intermittency be identified. We also investigated pe-
riodic boundary conditions and half-space geometry [60]
and found that again non-K41 exponents are allowed, im-
plying that both either a zero v-boundary or a finite dis-
tance between the plates are sufficient for the possibility
of intermittency corrections.
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8.2 Discussion of the method

A main advantage of our RG method is its use of the
Navier-Stokes equation and the question arises which of
its aspects are essential for our results.

The different physical meaning of Eulerian velocities
and r-velocity fluctuations can be seen in the difference

of the transformations T̃ and T . The appearance of s in
Green’s function motivates the choice of the transforma-
tion of s and helps determining β2. But the occurrence of
the operator S, which introduces the r-increment, cf. (5),
in the equation of motion for v effectively does not enter
the evaluation of the commutator constraint. Altogether
one sees that it is not essential to introduce Monin’s trans-
formation for the results obtained so far.

The quadratic and first-order gradient nature of the
nonlinear term influences directly the admissibility of
transformations through the nonlinearity constraint. The
tensor structure and the dimensionality have no qualita-
tive input on the RG transformation. Formally, all results
also apply for general d dimensional turbulence, but since
some assumptions such as the invariance of energy dissipa-
tion must not be valid in d = 1 and d = 2 dimensions the
physical significance of the results is questionable there.
We stick to d = 3 in this work. The simplified approach of
Section 5.1 to solve the nonlinearity constraint and the
local ansatz for T do not take into account the strong
nonlocality of pressure. It is one of the consequences of
Galilean invariance that the fixed prefactor of the nonlin-
earity is responsible for the elimination of one of the trans-
formation’s parameters, namely α1. Otherwise the scaling
exponents would be arbitrary also for the infinite system.
Concerning Green’s function for plane shear flow, only its
symmetry properties were utilized. We consider this as a
signature of universality: the results are independent of
the detailed nature of the boundary conditions.

Incompressibility does not change the set of solutions
found for T (Sect. 5.1), but it is exploited in the definition
of statistical averaging and enforces an isotropic rescaling
of r (Sect. 5.1). The definition of statistical averaging is
purely formal, but the microscopic nature of the space
average enters. The transformations found fulfill 〈v〉 = 0,
but do not take any special advantage of this.

Now we mention some of the open questions which
could be investigated further within this method. Most
importantly, the transformation of the forcing should be
worked out fully by finding a suitable treatment for the
structurally new contributions.

One could also think of looking for strongly nonlocal
transformations not included in the ansatz (29). We be-
lieve this to be quite difficult within the present frame-
work since the simplified two-stage process for solving the
nonlinearity constraint (38) is not reasonable then. But
if this is accomplished, it would again allow to consider
an anisotropic spatial rescaling, new transformations for
s, and an s-dependent dynamical exponent z, to give just
a few examples. We cannot rule out that new transforma-
tions exhibit non-K41 scaling even for the infinite system,
although this does not seem very likely.

Of course, the transformation properties of other phys-
ical quantities could be studied. Top candidates are the
dissipation length ` and the energy dissipation correlation
function. In principle, the examination of the scaling be-
haviour for ν > 0 could provide insight to the crossover
from the inertial to the dissipative range. Finding ν depen-
dent transformations should also confirm our assumption
of ν independence in the turbulent limit.

The application of our method to other dynamical sys-
tems whose scaling behaviour is better known, such as
Burgers’ equation, Kraichnan’s turbulence model for pas-
sive scalars, and the GOY cascade model could be possi-
ble, but is not self-evident, since the physical idea and the
key invariance assumptions do not seem to be transferable
in a meaningful way.

To summarize: although we could not calculate con-
crete numbers for intermittency exponents, we found ap-
parently non-trivial RG transformations which relate in-
termittency corrections to the existence of an outer length
scale. Several open questions remain which should be
investigated in the future.

We thank Detlef Lohse for stimulating discussions and Stefan
Thomae for bringing Monin’s transformation to our attention.

Appendix: Solving the nonlinearity
constraint

Here we present more details how to determine the RG
transformations found in Section 5.1.

The ansatz (29) is plugged into the lhs of the weak-
ened nonlinearity constraint (40) and derivations are
performed such that all derivatives operate directly on v
components only. This yields the following contributions
to the lhs of (40):

Coefficient functions α
(0,0)
i,j :

α
(0,0)
l,j vj(∂rlvi) + (∂rlα

(0,0)
i,j )vlvj . (A.1)

Coefficient functions α
(1,0)
i,j :

α
(1,0)
l,j;k1

(∂rk1
vj)(∂rlvi) + (∂rlα

(1,0)
i,j;k1

)vl(∂rk1
vj)

− α(1,0)
i,j;k1

(∂rk1
vl)(∂rlvj). (A.2)

Coefficient functions α
(2,0)
i,j :

α
(2,0)
l,j;k1,k2

(∂rk1
∂rk2

vj)(∂rlvi) + (∂rlα
(2,0)
i,j;k1,k2

)vl(∂rk1
∂rk2

vj)

− α(2,0)
i,j;k1,k2

[(∂rk1
∂rk2

vl)(∂rlvj) + 2(∂rk1
vl)(∂rk2

∂rlvj)].

(A.3)
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Coefficient functions α
(3,0)
i,j :

α
(3,0)
l,j;k1,k2,k3

(∂rk1
∂rk2

∂rk3
vj)(∂rlvi)

+ (∂rlα
(3,0)
i,j;k1,k2,k3

)vl(∂rk1
∂rk2

∂rk3
vj)

− α(3,0)
i,j;k1,k2,k3

[(∂rk1
∂rk2

∂rk3
vl)(∂rlvj)

+ 3(∂rk1
∂rk2

vl)(∂rk3
∂rlvj)

+ 3(∂rk1
vl)(∂rk2

∂rk3
∂rlvj)]. (A.4)

At this point we see that for given n ≥ 1,m = 0 there
are n−1 derivatives in the second term. The same is true
for all terms except for the second in the contribution for
n−1. But in general, i.e., except for n = 1, these deriva-
tives are distributed differently among the two v compo-

nents in each term. Thus, α
(n,0)
i,j;k1,... ,kn

= const . follows for

n ≥ 2. Next, we will show that even α
(n,0)
i,j;k1,... ,kn

= 0 for
n ≥ 2. This is immediately clear for odd n ≥ 3 since re-
spectively one particular term in the second line of (A.4)
has a unique derivational structure. For even n ≥ 4 there
are respectively two terms, but with distinct derivational

structure, leading again to α
(n,0)
i,j;k1,... ,kn

= 0. For n = 2
this only follows after evaluating the more complicated
constraint

α
(2,0)
l,j;k1,k2

(∂rk1
∂rk2

vj)(∂rlvi) =

α
(2,0)
i,j;k1,k2

[(∂rk1
∂rk2

vl)(∂rlvj) + 2(∂rk1
vl)(∂rk2

∂rlvj)].

The situation is different for n = 1, where the first and
second term of (A.2) lead to the constraint

α
(1,0)
l,j;k1

(∂rk1
vj)(∂rlvi) = α

(1,0)
i,j;k1

(∂rk1
vl)(∂rlvj).

A lengthy evaluation yields the representation α
(1,0)
i,j;k1

=

δi jα
(1)
k1

with some new functions α
(1)
k1

.
Now we turn to (A.1), the contribution for n = 0.

The second term has to vanish, because it is the only one
without any derivatives of v, which is only possible for

α
(0,0)
i,j = const . The first term is of the same structure as

the remaining second term of (A.2) and the rhs of (40),
giving finally the constraint

α
(0,0)
l,j vj(∂rlvi)+(∂rlα

(1,0)
i,j;k1

)vl(∂rk1
vj)=−(z−1)vl(∂rlvi),

whose general solution

α
(1)
l =−α

(0,0)
l,j rj−(z − 1)rl+γl

with γl independent of r (A.5)

we obtain after a few more calculational steps.

Coefficient functions α
(0,1)
i,j :

α
(0,1)
l,j (∂Lvj)(∂rlvi) + (∂rlα

(0,1)
i,j )vl(∂Lvj)

− α(0,1)
i,j (∂Lvl)(∂rlvj). (A.6)

Coefficient functions α
(0,2)
i,j :

α
(0,2)
l,j (∂2

Lvj)(∂rlvi) + (∂rlα
(0,2)
i,j )vl(∂

2
Lvj)− α

(0,2)
i,j

× [(∂2
Lvl)(∂rlvj) + 2(∂Lvl)(∂L∂rlvj)]. (A.7)

Similar to the contributions for n ≥ 2,m = 0 we find

α
(0,m)
i,j = 0 for m ≥ 2. For m = 1, on the other hand,

α
(0,1)
i,j = const . holds because of the second term in (A.6).

And because of the other two terms we have even

α
(0,1)
i,j = δi jβL with βL independent of r. (A.8)

Coefficient functions α
(1,1)
i,j :

α
(1,1)
l,j;k1

(∂rk1
∂Lvj)(∂rlvi) + (∂rlα

(1,1)
i,j;k1

)vl(∂rk1
∂Lvj)− α

(1,1)
i,j;k1

×[(∂rk1
∂Lvl)(∂rlvj)+(∂rk1

vl)(∂L∂rlvj)+(∂Lvl)(∂rk1
∂rlvj)].

(A.9)

This implies α
(n,m)
i,j;k1,... ,kn

= 0 for n,m ≥ 1.

Coefficient functions β
(1,0)
i,j :

β
(1,0)
l,j;k1

(∂sk1
vj)(∂rlvi) + (∂rlβ

(1,0)
i,j;k1

)vl(∂sk1
vj)

− β(1,0)
i,j;k1

(∂sk1
vl)(∂rlvj). (A.10)

Coefficient functions β
(2,0)
i,j :

β
(2,0)
l,j;k1,k2

(∂sk1
∂sk2

vj)(∂rlvi) + (∂rlβ
(2,0)
i,j;k1,k2

)vl(∂sk1
∂sk2

vj)

− β(2,0)
i,j;k1,k2

[(∂sk1
∂sk2

vl)(∂rlvj) + 2(∂sk1
vl)(∂sk2

∂rlvj)].

(A.11)

As before we infer β
(n,0)
i,j;k1,... ,kn

= 0 for n ≥ 2. But for

n = 1 β
(1,0)
i,j;k1

= const . holds because of the second term in

(A.11), and furthermore we have

β
(0,1)
i,j;k1

= δi jβk1 with βk1 independent of r. (A.12)

Coefficient functions β
(1,1)
i,j :

β
(1,1)
l,j;k1

(∂sk1
∂Lvj)(∂rlvi) + (∂rlβ

(1,1)
i,j;k1

)vl(∂sk1
∂Lvj)

− β
(1,1)
i,j;k1

[(∂sk1
∂Lvl)(∂rlvj) + (∂sk1

vl)(∂L∂rlvj)

+ (∂Lvl)(∂sk1
∂rlvj)]. (A.13)

It follows β
(n,m)
i,j;k1,... ,kn

= 0 for n,m ≥ 1.

Combining the partial solutions (A.5–A.12) we are now
able to write down the general solution (42) of (40).
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